
Testing of INI

Introduction

For assessment 3 we once again decided to use Test-driven development this is due to the fact

that we have had previous experience using this method in past assessments and as we only

had a couple of features to add we could discuss what each feature was meant to provide then

write a unit or functional tests to see if the implemented code achieved its goal. When doing unit

tests we either used a JUnit[1] or where this would be difficult two members of the team worked

through the code .

The testing of project that we took for assessment 3 was quite comprehensive but modifications

and additions to the tests already in place had to be made to allow for code that we wanted to

introduce to work. The changes we had to make to existing tests were very minor such as

adding one line of code to select a plane from a hash table or initialising new images that were

required in a test.

Testing Requirements

As you can see in the tables below there is a requirements satisfied column, while every test

may not satisfy a requirement, each requirement should be satisfied by at least one test. We

decided to test non-functional requirements as they still have goals which tests can be written

for. All functional requirements and the majority of non-functional requirements appear in the

table below. The reason some non-functional requirements are not satisfied is due to the time

constraints we were working under. The non-functional requirements we could not test were:

The game should be easy to learn (User 3.1), the game must be enjoyable (User 3.2) and the

user must view an aesthetically pleasing GUI (User 3.3) as they would require a batch of beta

tests and a resulting questionnaire to find if they had been achieved. The requirements can be

found in the appendix they have all of the requirements from assessment 1 as well as new

requirements that were added in assessment 3.

Test Table No.1

The table below is a testing table for all new features we have added to the project, we have used a mixture of Unit, Integration and

Functional/Acceptance tests. We have chosen not to test very simple methods like Getters and Setters due to the JVM already

having tests in place for methods like this.

Test
ID

Test Type Class What is under test? How was it tested? Tester
/s

Est.
run
time

Success Condition Requirements
Satisfied

1.1.1
(fig. 4)

Unit State Reset()

A JUnit test was created
that reset the scores
and timer

David < 10
ms

The scores and timer should
be equal to 0

1.1.2
(fig. 5)

Unit EndScreen EndScreen() The code was read
through by two
members of the team to
check that it functioned
as expected

Dan - The results predicted at the
beginning should be equal to
those produced when walking
through the code.

1.1.3 Unit State changeScore() The difficulty was set
and a JUnit test was
written that passed a
float to the
changeScore() method.

David < 10
ms

The value predicted for the
score to be should match
what is returned from the
changeScore() method

G.U.I User 1.1.4
Mathematical System
2.1.3

1.1.4 Unit Art preLoad(), load() The code was read
through by two
members of the team
checking that result
calculated from the
walkthrough are equal
to results that the
program gets

David - The walked through result
should be equal to that
produced by the program

G.U.I System 1.1.2
G.U.I System 1.1.3
G.U.I System 1.1.4
G.U.I System 1.1.5

1.1.5 Unit AircraftContr
oller

AircraftController() The code was read
through by two team
members

David < 10
ms

The game will be able to
handle all of the planes
spawned without performance
issues.

G.U.I System 1.1.8

1.1.6 Unit Airport A JUnit test was written
that creates 4 planes
they are then instructed
to land.

Jamaa
l

< 10
ms

The game should let the first
3 planes land and create a
new flight path for the plane
that is rejected.

G.U.I System 1.1.9
G.U.I System 1.1.10

1.2.1 Integration Leaderboard addLeaderBoardEntries()
addLeaderboardEntry()
sortLeaderboard()

A JUnit test was written
that created an array of
scores which were then
passed to the
addLeaderBoardEntries(
) method

David <
200
ms

The values in the leaderboard
array should be equal to
those in the leaderboard

G.U.I User 1.1.5

1.3.1 Functional State,
SidebarContr
oller

incScore(), update() The game was run and
hard difficulty was
selected

Sam <
5000
ms

The sidebar when playing the
game should update with 2
being added to the score
every second and 50 being
added for every plane
successfully navigated

1.3.2 Functional AircraftContr
oller,
AircraftType

AircraftController(),
AircraftType()

The game was played
allowing for many
planes to be spawned

Paul <
5000
ms

The game was played for a
while waiting for a snake
plane to spawn, it was also
recorded at what frequency
compared to other planes the
snake planes came onto the
screen. Which should be
around 1/7.

G.U.I User 1.1.8
G.U.I User 1.2.4

1.3.4 Functional Waypoint RandomFlightPaths Two planes were
spawned from the same
entry point

Jamaa
l

<
5000
ms

The planes flightpaths were
then compared to make sure
that they were actually
different

1.3.5 Functional Aircraft increaseSpeed(),
decreaseSpeed()

The fastest and slowest
planes in the game were
spawned

Paul <
5000
ms

The planes speed were
changed making sure they
stay in the bounds that they
should do

1.3.6 Functional Cloud Cloud() The game was run to Dan < The clouds should slowly G.U.I System 1.2.5

check that clouds had
been implemented
correctly

5000
ms

move from one side of the
screen to the other without
interfering with any features
of the game

1.3.7 Functional Map Map() The map was loaded
from the textures hash
table.

Sam <
5000
ms

A map depending on the
theme chosen should be
displayed to the user, behind
all planes, waypoints and exit
points.

G.U.I User 1.1.2
G.U.I System 1.1.2

1.3.8 Functional Aircraft Aircraft() The game was loaded
and an aircraft was
spawned.

David <
5000
ms

The aircraft will be visible to
the user including its flight
path through the waypoints all
the way to the exit point.

G.U.I User 1.1.3
G.U.I User 1.1.6
G.U.I System 1.2.1
Mathematical System
2.1.5

1.3.9 Functional Aircraft additionalDraw() A plane was created
and then selected, its
flight was then
interrupted by pressing
an arrow key.

Pauliu
s

<
5000
ms

The additionalDraw() method
should redraw the line from
the plane straight to the exit
point for that plane.

G.U.I User 1.1.6

1.3.10 Functional MenuControll
er

addLeaderboard() The game was loaded Paul <
5000
ms

A leaderboard should be
visible on the menu screen

G.U.I User 1.2.3
G.U.I System 1.2.2

1.3.11 Functional SidebarContr
oller

changed() A non-snake plane was
spawned and the land
button was pressed

Dan <
5000
ms

The selected plane should
head towards the airport and
disappear on arrival, the
number of planes in the
airport should also be
incremented

Interaction User 2.1.1

1.3.12 Functional SidebarContr
oller

changed() A non-snake plane was
spawned and the up
button was pressed

Sam <
5000
ms

The altitude of the selected
plane should increase if the
current altitude is lower than
15000

Interaction User 2.1.2
G.U.I System 1.1.6

1.3.13 Functional MenuControll
er

changed() The game was played
three times each time
selecting a new theme

Dan <
5000
ms

Each time a theme is selected
the game should load with a
the corresponding textures.

Interaction User 2.2.1

Test Table No.2

The second test table (below) is for testing that all requirements from assessment 1 have been met by the project we have taken up.

Test
ID

Test Type Class What is under test? How was it tested? Tester
/s

Est.
run
time

Success Condition Requirements Satisfied

2.1.1 Unit
(fig. 6)

Aircraft increaseSpeed(),
decreaseSpeed()

A JUnit test was written
that created two default
planes. One plane was
selected and the
accelerated once, the
other was decelerated.

David < 10
ms

The plane that was
accelerated should increase
in speed and the one that
was decelerated should
decrease in speed.

Written by previous
engineering team, but
modified to work for new
code.

Interaction User 2.2.2
G.U.I System 1.2.4

2.1.2 Unit Aircraft act() A pair of testers read
through the code to
make sure that there
were no errors present.

Pauliu
s, Dan

 The predicted results should
match those of the calculated
results.

G.U.I System 1.1.1
Mathematical System
2.1.4
Mathematical System
2.2.1

2.2.1 Functional Entrypoint Entrypoint() Four entry points were
created and then drawn.

Jamaa
l

<
5000
ms

The entry points that were
created should appear on
screen in the correct
locations.

G.U.I User 1.1.1
G.U.I System 1.1.3
G.U.I System 1.1.5

2.2.2 Functional Exitpoint Exitpoint() Four exit points were
instantiated and then
printed to the screen in

Jamaa
l

<
5000
ms

The exit points should be
visible to the user in the exact
location that they were

G.U.I User 1.1.1
G.U.I System 1.1.3
G.U.I System 1.1.5

different locations. passed during creation.

2.2.3 Functional EndScreen EndScreen() Two planes were
instantiated and then
intentionally collided

Pauliu
s

<
5000
ms

The game should be stopped
and the end screen
displayed.

G.U.I User 1.1.7
G.U.I System 1.1.7
Mathematical System
2.1.2

2.2.4 Functional AircraftContr
oller, Aircraft

update(),
separationRulesBreached
()

Two planes were
created, one was
selected and then
directed towards the
other plane.

Sam <
5000
ms

The plane which is clicked on
should have a red circle
appear around it, when they
are steered towards each
other a red ring should be
visible around both of the
planes.

G.U.I User 1.1.9
Mathematical System
2.1.1
Non-functional System
3.2

2.2.5 Functional SidebarContr
oller

update() A plane was created
and then selected.

Paul <
5000
ms

The speed label in the
sidebar should update with
the speed of the selected
plane.

G.U.I User 1.2.1

2.2.6 Functional MenuControll
er,
MenuScreen

menuController(),
render()

The game was loaded Dan <
5000
ms

The first screen that appears
to the user should be the
menu screen

G.U.I User 1.2.2

2.2.7 Functional MenuControll
er,
MenuScreen

menuController(),
render()

The game was loaded
and a game was played

David <
5000
ms

After the game over screen
the menu screen should
appear

G.U.I User 1.2.2

2.2.8 Functional SidebarContr
oller

changed() A non-snake plane was
spawned and the down
button was pressed

David <
5000
ms

The instant the down button
is pressed the selected
planes altitude should
decrease unless the current
altitude is 5000

Interaction User 2.1.2
G.U.I System 1.1.6

2.2.9 Functional SidebarContr
oller

changed() A plane was spawned
and selected, the assign
waypoint was then
pressed and a waypoint
was clicked

Sam <
5000
ms

The plane should add the
selected waypoint to the front
of its waypoint list and then
head straight towards it

Interaction User 2.1.3

2.2.10 Functional SidebarContr
oller

changed() The game was loaded
and played. The Main
Menu button was then
pressed

Pauliu
s

<
5000
ms

The game should exit to the
main menu the instant the
button was pressed

Interaction User 2.1.4

2.2.11 Functional Waypoint Waypoint() Ten waypoints were
instantiated at static
locations

Dan <
5000
ms

The waypoint that were
created should appear in the
correct locations

G.U.I System 1.2.3

2.2.12 Functional GameScreen update(), render() The game was loaded
and a fps counter was
drawn on screen.

Jamaa
l

<
5000
ms

The fps shown by the counter
should be higher than 30
most of the time.

Non-functional System
3.1

2.2.13 Functional - - The game was loaded
and played on 3
systems installed with
Mac, Linux and windows
OS

Dan <
5000
ms

The game should run on all
platforms without any change
in performance or game play

Non-functional System
3.3
Non-Functional System
3.6

2.2.14 Functional - - The games texture files
were opened

Paul <
5000
ms

The textures should have
consistent colours that fit in
with the game. All objects like
waypoints and planes should
also be clearly visible.

Non-functional System
3.4

2.2.15 Functional - - The game was played. Pauliu
s

<
5000
ms

The time taken from the
game to be opened and the
game to be interactable
should be less than 5
seconds

Non-functional System
3.5

2.2.16 Functional Waypoint deleteWaypoint() The game was loaded,
a user way point was
created and then right
clicked to remove

Jamaa
l

<
5000
ms

The waypoint should be
removed from the airspace

Interaction User 2.1.7

Acceptance Testing

The use cases can be found in the appendix these are the exact use cases from assessment 1.

An acceptance test will be passed if a user can interact with a game how the main or secondary

success scenario stipulates.

Use Case 1:

 Main success scenario: The system indicates that the operation has completed.

 Preconditon: We loaded the game, and waited for a plane to spawn.

 Trigger: We selected a plane by clicking on it.

 Scenario: To control the plane we used the arrow keys to move it in the direction we

 wanted.

 Post-condition: The plane changed direction to the desired heading.

 Acceptance Test Successful?: Yes

Use Case 2:

 Main success scenario: The leaderboard is shown on the main menu.

 Trigger: We loaded the game.

 Post-condition: We found the information we wanted from the leaderboard.

 Acceptance Test Successful?: Yes

Use Case 3:

 Main success scenario: Player quits the game.

 Precondition: The game is being played.

 Trigger: We pressed the ‘Menu' button or the Esc key.

 Scenario: The game returned to the main menu.

 Post-condition: The game stopped executing.

 Acceptance Test Successful?: Yes, but we did not want scores being recorded when the

 game was quit so we just showed the main menu.

Use Case 4:

 Main success scenario: The User sees the game over screen. (

 Precondition: We loaded the game, selected the earth theme and started playing the

 game, we then waited for two planes to spawn. (fig. 1)

 Trigger: The planes collide.

 Scenario: When two planes spawned, we selected both and changed their heading so

 they would collide with each other at a similar altitude. (fig. 2)

 Post-condition: The game over screen appears and the game is stopped (fig. 3)

 Acceptance Test Successful?: Yes.

Use Case 5:

 Main success scenario: User wants to land/exit a plane.

 Precondition: We started playing the game and waited for a plane to finish moving

 through their designated way points.

 Trigger: The plane flies through the way point.

 Scenario: We selected a plane and pressed the 'land' button.

 Post-condition: The plane is removed from the screen.

 Acceptance Test Successful?: Yes.

Testing Examples

Fig. 1: Case 4 Pre-condition

Fig. 2: Case 4 Scenario

Fig. 3: Case 4 Main Success Scenario and Post-condition

Fig. 4: Test 1.1.1 Test reset() and

JUnit

Fig. 5: Test 1.1.2 Leaderboard

addLeaderBoardEntries()

addLeaderboardEntry()
sortLeaderboard() and JUnit

Fig. 6: Test 2.1.1 Aircraft

increaseSpeed(),

decreaseSpeed()

APPENDIX

Use Cases

Use Case 1

“Change heading of an aeroplane”

1. Primary Actor: Player

2. Supporting Actors: Computer

3. Precondition:

3.1. Player is playing the game.

3.2. At least one aeroplane is in the airspace.

3.3. At least one waypoint is remaining for the aeroplane.

4. Trigger: The player clicks on the aeroplane.

5. Scenario:

5.1. Arrow appears pointing from aeroplane to mouse pointer. The heading and altitude

of the aeroplane is shown.

5.2. Player moves the mouse until it points in the desired direction and then lets go of

the mouse.

5.3. The system saves the heading selected by the user. The system displays the

altitude editor.

5.4. The player adjusts target altitude using either the scroll wheel, altitude bar, or by

typing in an altitude.

5.5. The system indicates that the operation has completed.

6. Post-condition: The heading and altitude are set as targets for the aeroplane. The aeroplane

begins changing direction.

Use Case 2

“Player checks the leaderboard”

1. Primary Actor: Player

2. Supporting Actors: Computer

3. Precondition:

3.1. Player has a computer.

3.2. Player has the ATC game installed.

4. Trigger: Player loads up the game.

5. Main success scenario:

5.1. The player accesses main screen.

5.2. The leaderboard is shown.

6. Post-condition: Player gets the information they wanted from the leaderboard.

Use Case 3

“Player quits the game”

1. Primary Actor: Player

2. Supporting Actors: Computer

3. Precondition:

3.1. The game is being played.

4. Trigger: Player presses the quit button.

5. Main Success Scenario:

5.1. Game Over screen is shown.

5.2. Game exits.

6. Post-condition: The game is no longer running.

Use Case 4

“User crashes a plane”

1. Primary Actor: Player

2. Supporting Actors: Computer

3. Precondition:

3.1. The game is being played.

3.2. There are aeroplanes under the user’s control.

4. Trigger: Aeroplanes collide.

5. Scenario:

5.1. User sees an explosion at the position of the plane.

5.2. User is shown game over screen.

6. Post-condition: Main menu is shown and the game has stopped.

Use Case 5

“User wants to land/exit a plane”

1. Primary Actor: Player

2. Supporting Actors: Computer

3. Precondition:

3.1. The game is being played

3.2. There are aeroplanes in the airspace

4. Trigger: Plane flies through final waypoint.

5. Main success scenario:

5.1. The player manoeuvres the plane so that it flies through its exit point.

5.2. Plane is removed.

6. Post-condition: Player notices score increment after the plane has exited through its exit

point.

Requirements

(GUI) (1)
User shall see:
(1.1)

User Requirements How to meet User Requirements?

1.1.1 Airplane entry and exit points on the edges of the
game screen that planes will arrive at and leave
from on their flight path.

Place entry and exit points at specific places on the
screen edge. Planes will then spawn and exit at these
points.

1.1.2 A GUI showing an airspace (including waypoints,
entry/exit points and planes).

When the player starts a game the GUI will be rendered
on-screen with all waypoints, entry and exit points in
place. Planes will then spawn on-screen.

1.1.3 Feedback on which plane is currently selected. When selected a red circle will appear around a plane
including the plane flight path as a red line to an exit
point.

1.1.4 (Ass.3) Their score based on:
1.1.4.1: Passing through way points and exit points.
1.1.4.2: How long the player has been playing
(proportionally to time in seconds).
1.1.4.3: Separation violations
1.1.4.4 How many planes are in the Airport

1.1.4.1: Will include a score incrementer that when a
plane has been detected as leaving the airspace the user
will gain points. Bonus points will be awarded if the plane
passes through its designated way points. Points will be
deducted if plane leaves the screen boundaries not
through its exit point
1.1.4.2: A timer has been implemented and a score
multiplier will allow time based scores to increment based
on these values.
1.1.4.3: For each second two or more planes are violating
their separation rules the player will lose a set amount of
points.
1.1.4.4 Player will lose certain amount of points per
second based on the number of planes docked at the
airport.

1.1.5 (Ass.3) Their final score entered into the leaderboard if
they qualify to be placed on the leaderboard with a
high enough score by entering their name after a
game ends (not if they voluntarily exit).

Compare leaderboard scores with the score just received;
if the new score is high enough then prompt the player for
their score and place the score in the leaderboard file and
return to the ‘Main Menu’. The score will not be asked for
if the user ends the game voluntarily.

1.1.6 (Ass.3) A selected Plane’s flight plan projection indicated
by a red line path through all relevant waypoints
and an exit point.

Edit the code that shows the path to the currently selected
planes exit point to also point to the waypoints the plane
travels through before it leaves through its exit point.

1.1.7 The “Game Over” screen appears when the player
loses.

After a plane has crashed the ‘Game Over’ screen will
appear showing score and time played with the possibility
of asking for a leaderboard entry.

1.1.8 Planes with different characteristics including
speed and colour.

Alter code to allow planes to have different base speeds
e.g. faster planes will have a faster base speed and
slower planes will have slower base speed and replicate
plane images with different hues and colours.

1.1.9 Red circles around the planes where the separation
rules are being violated or if the planes are close
together.

The violating planes will have a red circle appear around
them showing the separation violation for the difficulty.
These circles will appear when planes are calculated to
be close enough to each other.

User should:
(1.2.1)

User Requirements How to meet User Requirements?

1.2.1 See the speed and altitude of a plane in the ‘Side
Menu’ and altitude on the airspace GUI.

Selected planes will have a calculated speed and altitude
which will be shown in the ‘Side Menu’ GUI. Altitude will
also be shown near to each plane on the GUI.

1.2.2 Be able to see a ‘Main Menu’ screen to start the
game and after exiting the ‘Game Over’ screen.

After initialising the ‘Main Menu’ will appear and after the
‘Game Over’ screen or exiting a game voluntarily the
‘Main Menu’ will also be shown.

1.2.3 (Ass.3) Be able to view a leaderboard on the ‘Main Menu’. Leaderboard will be displayed onto the ‘Main Menu’.

1.2.4 (Ass.3) See a rogue plane that cannot be controlled. Create a different sprite for the rogue plane and prevent
the player from controlling the plane. The plane must
have a set flight path.

(Interaction) (2)
User shall be able
to: (2.1)

User Requirements How to meet User Requirements?

2.1.1 (Ass.3) Command a plane to land at the airport via a
‘landing’ button on the ‘Side Menu’.

Place a ‘Land’ button on the ‘Side Menu’ which sends a
plane to the Airport when pressed.

2.1.2 Alter a plane’s altitude. Allow player to press the ‘W’ and ‘S’ or ‘↑’ and ‘↓’
keyboard buttons and use the ‘Up’ and ‘Down’ buttons on
the ‘Side Menu’ to alter the altitude.

2.1.3 Change a plane’s direction by assigning new
waypoints.

Press the ‘Assign Waypoint’ then click on a specific
waypoint while a plane is selected. This will redirect a
plane. A selected plane will move when pressing certain
arrow keys in the specified direction.

2.1.4 Exit game whenever they want by pressing the
‘Main Menu’ button in-game.

Include a ‘Main Menu’ button that will return the user to
the ‘Main Menu’ and end the current game.

2.1.5 Change plane’s direction manually. Allow player to press ‘A’ and ‘D’ or ‘←’ and ’→’ keyboard
buttons or ‘Left’ and ‘Right’ side menu buttons to change
plane’s direction and turn off autopilot.

2.1.6 Create new waypoints for the planes. Allow player to create new waypoints in the airspace by
pressing the ‘Create waypoint’ button on side menu and
then pressing left mouse button on the desired location.

2.1.7 Delete user-created waypoints. Allow player to delete waypoints that were created by
pressing the right mouse on the desired waypoint.

User should be
able to: (2.2)

User Requirements How to meet the User Requirements?

2.2.1 (Ass.3) Play the game with different skins. The GUI file will be copied and changed to include
different skins e.g. Space and underwater theme that the
user can choose between on the ‘Main Menu’. These
reskins will not change the gameplay only the
appearance.

2.2.2 Change speed of planes Pressing ‘Q’, ‘E’, ‘Accelerate’ or ‘Decelerate’ will allow the
user to change a planes speed to a maximum and

minimum value (specific to each plane).

Non-
functional (3)

User Requirements How to meet the User Requirements?

3.1 Game should be easy to learn. The user should be fluent with the use of the controls
within two games with the game manual provided.

3.2 The game must be enjoyable and leaderboard
scoring should be addictive.

The user must be happy having played the game and
enjoyed the competitive aspect (leaderboard scoring).

3.3 View an aesthetically pleasing GUI. ‘Main Menu’ includes new buttons to change between old
‘Earth’, Space and Ocean skin. New skins designed to be
fun and easy on the eye. ‘Side Menu’ redesigned to use
gentler colours.

(GUI) (1)
System shall:
(1.1)

System Requirements How to meet System Requirements?

1.1.1 Move planes using translation animations. Use small increments of movement to simulate smooth
transitions and continuous movement.

1.1.2 Have a backdrop GUI image for the airspace. Load an image from a file to be displayed on the canvas.

1.1.3 (Ass.3) Place an invisible airport entry/exit point. An invisible entry/exit point will be placed at specific
coordinates that will cause planes to be removed when
the ‘Land’ button is pressed and take off when the ‘Take
off’ button is pressed.

1.1.4 Show at least 10 intermediate waypoints. Replicate at least 10 waypoints images from a file on the
canvas on screen using coordinates.

1.1.5 Display at least 3 entry points and 3 exit points. Load and display the entry/exit points images from a file
and display them on the canvas GUI at specific
coordinates around the edge of screen.

1.1.6 Have an interface to adjust plane’s altitude. Map the ‘W’, ‘S’, ‘↑’,‘↓ or ‘Increase Altitude’ and ‘Decrease
Altitude’ to adjust the planes altitude.

1.1.7 Display “Game Over” screen when user loses a
game.

After a plane crashes the game screen is removed and a
‘Game Over’ screen is displayed.

1.1.8 (Ass.3) Game should allow at least 10 flights on-screen. The number of planes generated can be manipulated by
changing the integer variables for each difficulty where
hard mode will spawn more planes (with 10 being the
minimum).

1.1.9 (Ass.3) Planes must be able to land and take off from the
airport.

When the ‘Land’ button is pressed, the selected plane will
travel to the airport where it will detect a collision and be
removed from the screen and stored in the airport. A
maximum number of planes can be stored and are given
a new flight plan when they take off and return to the

game. Excess planes will reach the airport and continue
on their flight path.

1.1.10 (Ass.3) Limit the number of planes allowed to land and take
off from an airport simultaneously.

A maximum of 3 planes can land simultaneously at the
airport. Only one plane can take off every 2 seconds to
prevent them from colliding with each other if the player
pressed the ‘Take Off’ button in rapid succession.

System should:
(1.2)

System Requirements How to meet System Requirements?

1.2.1 Display plane’s flight plan and direction. Generate a red line path to show where the planes
waypoint path is, ending with the exit point.

1.2.2 (Ass.3) Display the leaderboard on the ‘Main Menu’ at
startup.

When the game is initialised the ‘Main Menu’ will be
displayed with graphics and sound loaded.

1.2.3 Place waypoints on the GUI at the start of
gameplay.

Use static waypoint placements before the planes start
spawning.

1.2.4 Change speed of planes Map ‘Q’, ‘E’ buttons and use ‘Accelerate’ and ‘Decelerate’
sidebar buttons to increase/decrease the speed by a set
amount.

1.2.5 (Ass.3) Allow clouds to pass by on ‘Earth’ mode skin. Clouds will be designed in the GUI file and move like
planes across the screen but won’t interact with planes or
the environment. The clouds will be semi-transparent so
players can see through the clouds to prevent obscured
views.

(Mathematical) (2)
System shall: (2.1)

System Requirements How to meet System Requirements?

2.1.1 Monitor plane separation rules. The game will check for the difference in altitude and the
horizontal 2D space plane and check whether the planes
have violated the separation rules returning a pair of the
planes that have violated the rules to be displayed on
screen using a separation circle.

2.1.2 End the game if two or more planes crash. If the planes are close enough in altitude and horizontal
2D space then they will be declared as crashed and the
‘Game Over’ screen will appear.

2.1.3 (Ass.3) Track and calculate score based on:
2.1.3.1: If the plane passes through its way points
and exit point.
2.1.3.2: How long the player has been playing (time
in seconds).
2.1.3.3: Whether two or more planes are violating
their separation rules.
2.1.3.4 For every second plane is docked at the
airport

2.1.3.1: When a plane exits through its designated exit
point the player will receive a scaled score increase. If the
plane passes through its way points the player will receive
bonus points.
2.1.3.2: The score is incremented with a multiplier for
each second the game has been played.
2.1.3.3: Decrement the score by a set amount for each
second one or more planes are violating their separation
rules (decrementing stacks per plane violating another
plane).
2.1.3.4 Decrement the score every second by a set

amount based on the number of planes currently docked
in the airport.

2.1.4 Calculate updated positions for each plane
regularly based on velocities and angles.

The coordinates of the plane will be updated based on
the velocity and the current rotation of the plane. The
plane will move to specific waypoints at specific angles at
the velocity it currently has.

2.1.5 Specify a static bearing (ignoring the flight plan) for
a selected plane.

When a plane is selected a red line path will be drawn to
show its flight path which can be changed by taking
manual control of the plane and turning it left or right or
assigning a new way point.

System should:
(2.2)

System Requirements How to meet System Requirements?

2.2.1 Calculate realistic movements in response to
changes in flight path.

When a player changes the flight path of a plane
manually the plane should move smoothly (and in a curve
if necessary) in the direction of the new waypoint/exit
point designated.

Non-functional (3) Non-functional Requirements How to meet Non-functional Requirements?

3.1 GUI should appear to be real-time. GUI must be updated at least 30 times per second
(30fps).

3.2 Collidable objects (planes) shall not pass through
each other without consequences.

Check for breaches of the separation rules every frame
(30fps).

3.3 Consistent Design. Similar colour scheme is used across all skins for the
‘Main Menu’ and design of the game title. Reskinned
vehicles use different colours to be consistent between
versions and contrast with background GUI’s.

3.4 The game has to load quickly. User can play game in less than 5 seconds from loading.

3.5 Game must be cross-platform and run on multiple
Operating Systems.

The ATC game must run on Windows, Linux and OS X.

